Kinetic study of various binding modes between human DNA polymerase beta and different DNA substrates by surface-plasmon-resonance biosensor.
نویسندگان
چکیده
The interaction of a series of DNA substrates with human DNA polymerase beta has been studied in real time by using a surface-plasmon-resonance (SPR) biosensor technique. We have prepared the sensor surfaces comprising different DNA targets, including single-stranded DNA, blunt-end double-stranded DNA, gapped DNA and DNA template-primer duplexes containing various mismatches at different positions. The binding and dissociation of polymerase beta at the DNA-modified surfaces was measured in real time, and the kinetics profiles of polymerase-DNA interaction were analysed using various physical models. The results showed that polymerase beta binding to single-stranded DNA (K(A)=1.25 x 10(8) M(-1); where K(A) is the equilibrium affinity constant) was thermodynamically more favourable than to blunt-end DNA duplex (K(A)=7.56x10(7) M(-1)) or gapped DNA (K(A)=8.53x10(7) M(-1)), with a single binding mode on each DNA substrate. However, polymerase beta bound to DNA template-primer duplexes (15 bp with a 35 nt overhang) at two sites, presumably one at the single-strand overhang and the other at the 3'-end of the primer. When the DNA duplex was fully matched, most of the polymerase beta (83%) bound to the template-primer duplex region. The introduction of different numbers of mismatches near the 3'-end of the primer caused the binding affinity and the fraction of polymerase beta bound at the duplex region to decrease 8-58-fold and 15-40%, respectively. On the other hand, the affinity of polymerase beta for the single-strand overhang remained unchanged while the fraction bound to the single-strand region increased by 15-40%. The destabilizing effect of the mismatches was due to both a decrease in the rate of binding and an increase in the rate of dissociation for polymerase beta.
منابع مشابه
Study of MMLV RT- binding with DNA using surface plasmon resonance biosensor.
Surface plasmon resonance biosensor technique was used to study the binding of Moloney murine leukemia virus reverse transcriptase without RNase H domain (MMLV RT-) with DNA in the absence and in the presence of inhibitors. Different DNA substrates, including single-stranded DNA (ssDNA), DNA template-primer (T-P) duplex and gapped DNA, were immobilized on the biosensor chip surface using strept...
متن کاملDetection of TP53 mutation using a portable surface plasmon resonance DNA-based biosensor.
A DNA-based surface plasmon resonance (SPR) biosensor has been developed for the detection of TP53 mutation using the inexpensive and commercially available instrument, SPREETA SPR-EVM-BT, from Texas Instruments. A direct immobilisation procedure, based on the coupling of thiol-derivatised oligonucleotide probes (Probe-C6-SH) to bare gold sensor surfaces, was optimized using synthetic oligonucl...
متن کاملBiospecific interaction analysis (BIA) of low-molecular weight DNA-binding drugs.
DNA-binding drugs have been reported to be able to interfere with the activity of transcription factors in a sequence-dependent manner, leading to alteration of transcription. This and similar effects could have important practical applications in the experimental therapy of many human pathologies, including neoplastic diseases and viral infections. The analysis of the biological activity of DN...
متن کاملMolecular basis of HHQ biosynthesis: molecular dynamics simulations, enzyme kinetic and surface plasmon resonance studies
BACKGROUND PQS (PseudomonasQuinolone Signal) and its precursor HHQ are signal molecules of the P. aeruginosa quorum sensing system. They explicate their role in mammalian pathogenicity by binding to the receptor PqsR that induces virulence factor production and biofilm formation. The enzyme PqsD catalyses the biosynthesis of HHQ. RESULTS Enzyme kinetic analysis and surface plasmon resonance (...
متن کاملFellowships, Grants, & Awards
Vaccinia virus DNA polymerase catalyzes duplex-byduplex DNA joining reactions in vitro and many features of these recombination reactions are reprised in vivo. This can explain the intimate linkage between virus replication and genetic recombination. However, it is unclear why these apparently ordinary polymerases exhibit this unusual catalytic capacity. In this study, we have used different su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 361 Pt 2 شماره
صفحات -
تاریخ انتشار 2002